In silico approaches for predicting ADME properties of drugs.

نویسندگان

  • Fumiyoshi Yamashita
  • Mitsuru Hashida
چکیده

Combinatorial chemistry and high-throughput screening have increased the possibility of finding new lead compounds at much shorter time periods than conventional medicinal chemistry. However, too much promising drug candidates often fail because of unsatisfactory ADME properties. In silico ADME studies are expected to reduce the risk of late-stage attrition of drug development and to optimize screening and testing by looking at only the promising compounds. To this end, many in silico approaches for predicting ADME properties of compounds from their chemical structure have been developed, ranging from data-based approaches such as quantitative structure-activity relationship (QSAR), similarity searches, and 3-dimensional QSAR, to structure-based methods such as ligand-protein docking and pharmacophore modelling. In addition, several methods of integrating ADME properties to predict pharmacokinetics at the organ or body level have been studied. In this article, we briefly summarize in silico ADME approaches.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prediction of In Silico ADME Properties of 1,2-O-Isopropylidene Aldohexose Derivatives

Retention behavior of molecules mostly depends on their chemical structure. Retention data of biologically active molecules could be an indirect relationship between their structure and biological or pharmacological activity, since the molecular structure affects their behavior in all pharmacokinetic stages. In the present paper, retention parameters (RM0) of biologically active 1,2-O-isopropyl...

متن کامل

Prediction of In Silico ADME Properties of 1,2-O-Isopropylidene Aldohexose Derivatives

Retention behavior of molecules mostly depends on their chemical structure. Retention data of biologically active molecules could be an indirect relationship between their structure and biological or pharmacological activity, since the molecular structure affects their behavior in all pharmacokinetic stages. In the present paper, retention parameters (RM0) of biologically active 1,2-O-isopropyl...

متن کامل

RP-HPTLC Retention Data in Correlation with the In-silico ADME Properties of a Series of s-triazine Derivatives

The properties relevant to pharmacokinetics and pharmacodynamics of four series of synthesized s-triazine derivatives have been studied by Quantitative structure-retention relationship (QSRR) approach. The chromatographic behavior of these compounds was investigated by using reversed-phase high performance thin-layer chromatography (RP-HPTLC). Chromatographic retention (RM0) was correlated with...

متن کامل

RP-HPTLC Retention Data in Correlation with the In-silico ADME Properties of a Series of s-triazine Derivatives

The properties relevant to pharmacokinetics and pharmacodynamics of four series of synthesized s-triazine derivatives have been studied by Quantitative structure-retention relationship (QSRR) approach. The chromatographic behavior of these compounds was investigated by using reversed-phase high performance thin-layer chromatography (RP-HPTLC). Chromatographic retention (RM0) was correlated with...

متن کامل

Structure-ADME relationship: still a long way to go?

BACKGROUND Theoretical models for predicting absorption, distribution, metabolism and excretion (ADME) properties play increasingly important roles in support of the drug development process. OBJECTIVE We briefly review the in silico prediction models for three important ADME properties, namely, aqueous solubility, human intestinal absorption, and oral bioavailability. METHODS Rather than g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Drug metabolism and pharmacokinetics

دوره 19 5  شماره 

صفحات  -

تاریخ انتشار 2004